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Abstract 

 
This paper presents the Confidence Tool developed at NASA Ames Research 
Center as a step towards providing a method to provide a metric to monitor 
adaptive learning algorithm performance in operating conditions for which the 
correct learning solution is unknown.  These control systems primarily comprise 
learning systems utilizing neural network models, that use large over-
parameterized models where the true system model is unknown because of 
uncertainties and un-modeled parameters.  The Confidence Tool is a dynamic 
monitor which checks all input and output values of the neural network and 
determines if the result of the neural network is reliable. During the operation of 
the system (i.e., during the flight), a metric called the confidence measure is 
calculated for the outputs of the neural network.  This metric is based upon a 
statistical model of the system.  This paper presents the manner in which the 
confidence tool can be integrated into an adaptive system, a description of the 
Confidence Tool, and finally a comparison of simulation and flight test data. 

 
Introduction 
 
Adaptive control technologies that incorporate learning algorithms have been proposed to enable 
autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or 
poorly defined operating environments.
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  At the present time, however, it is unknown how adaptive 

algorithms can be routinely verified, validated, and certified for use in safety-critical applications.  
Rigorous methods for adaptive software verification and validation must be developed to ensure that the 
control software functions as required and is highly safe and reliable. 
 
A large gap appears to exist between the point at which control system designers feel the verification 
process is complete, and when FAA certification officials agree it is complete.  Certification of adaptive 
flight control software is complicated by the use of learning algorithms (e.g., neural networks) and varying 
degrees of system non-determinism.  Analytical efforts must be made in the verification process to place 
guarantees on learning algorithm stability, rate of convergence, and convergence accuracy.  To satisfy 
FAA certification requirements, it must also be demonstrated that the adaptive flight control system is also 
able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a 
means of crew notification of the (impending) failure.  It was for this purpose that the NASA Ames 
Confidence Tool was developed.
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This paper presents the application of the Confidence Tool as a means of providing a metric to monitor 
adaptive learning algorithm performance in operating conditions for which the correct learning solution is 
unknown.  As a preliminary step, the paper will first describe the type of learning system under 
discussion.  Then the Confidence Tool will be presented, followed by a comparison of simulation and 
flight test data. 
 
Adaptive Flight Control System Architectures  
 
Control systems for large aircraft and some spacecraft are often comprised of hybrid systems involving 
both  inner-loop  and  outer-loop  control  architectures  (Fig. 1).   The  outer-loop  or  executive  controller 
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Figure 1.  Flight controller architecture. 

 
governs the conditional execution of several inner loop controllers.  The outer-loop controller may 
coordinate a myriad of mission management actions including providing a human-machine interface, 
health monitoring, engine performance monitoring, navigation, guidance, and flight control.  Outer-loop 
control software is generally comprised of finite state automata in which the sequencing of control tasks 
and multiple program threads is done conditionally based on finite state logic.  The lower-level processes 
may be either finite state or continuous systems.  The majority of inner-loop flight control systems require 
use of continuous variables and are most commonly represented as a coupled set of first order differential 
equations: 
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where x is the dynamic state of the vehicle (rates, positions), u is a vector of control signals, and y is a 
vector of system measurements.  A and B are generally matrices.  Figure 2 illustrates a typical closed-
loop flight control representation.  In this figure, sensors are used to deduce the state of the aircraft for 
direct comparison to the desired state.  The difference is referred to as the error signal.  A PID 
(proportional, integral, derivative) controller may then be used to form control signals that are proportional 
to either the error itself, the integral of the error signal, and/or the derivative of the error signal: 
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Figure 2.  PID inner-loop controller. 
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The proportionality constants (KP, KI and KD) are called the gains of the system and are vectors for multi-
input, multi-output systems.  Tuning the controller is a matter of adjusting the gain values to achieve 
optimal performance.  Generally, there is a range of gain values that yield acceptable controller 
performance.  However, when the gains are selected too large, the system may be over-controlled and 
exhibit instability.  Similarly, if the gain values are selected too low, the system response is usually made 
to become too sluggish, sometimes even to the point of instability.  Once the optimal values for the gains 
have been found, they are used as fixed constants in the control law.  For this reason, this type of 
controller is often referred to as a “fixed-gain” controller. 
 
Fixed-gain controllers have the limitation that the controller gains cannot be changed once the controller 
is placed into operation.  Unforeseen events, such as sudden loss of a control surface or even the 
gradual deterioration of control system components, may render the fixed-gain control system unusable.  
This is because the control system was designed to operate under the assumption of all control surfaces 
being fully functional 

 

Adaptive Flight Control System with Learning System 

One way of building a mechanism to allow an adaptive controller to compensate for failed control 
surfaces and other control system anomalies is to use learning algorithms in the control system design.  
Although many examples can be found in the literature, this paper concerns the case study of application 
of the Confidence Tool on a flight testbed at NASA’s Dryden Flight Research Center.  The testbed is a 
specially modified F-15 aircraft (Fig. 3).  This aircraft has been modified to include canard control surfaces 
mounted in the upper inlet area forward of the wing.  In test flights, the canards are used to dynamically 
change the airflow over the wing, thus simulating wing damage.

4
  In addition, other normal flight control 

surfaces (ailerons, stabilators) can also be held fixed to simulate a stuck actuator or loss of a control 
surface.  The aircraft is controlled by a quadruplex, digital, fly-by-wire flight control system that uses a 
separate computer to implement the neural adaptive controller.  With this arrangement, the neural 
controller can be disabled at any time, leaving a fully functional normal control system to fly the aircraft. 

 

 

 

Figure 3: NASA DFRC Intelligent Flight Control System F-15 testbed aircraft. 
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A neural adaptive controller was designed by NASA Ames Research Center after the manner proposed 
by Calise and Rysdyk as a means to compensate for aircraft damage in flight.

5
  A schematic of the neural 

adaptive architecture is presented in Fig. 4.  Although the scope of this paper does not permit a detailed 
discussion of the design principles, the details may be found in Refs. 6-7.  Looking at just the outermost 
loop in Fig. 3, it is seen that the measured pitch rate, roll rate, and yaw rate (and other state parameters) 
are compared to the angular rates commanded by the pilot (rate commands) to form an error signal to 
drive a PID controller.  The PID controller produces intermediate control signals of the type specified by 
Eq. 2.  The inverse plant model takes the PID control signals as input and produces aircraft control 
surface deflection commands.  These commands would be all that is required to control the aircraft were 
it not for errors in the inverse plant model (potentially as the result of sudden loss of a control surface or 
aircraft damage). 
 
The function of the neural network is to provide control augmentation commands to help the pilot fly the 
aircraft in case of damage or modeling errors in the inverse.  As indicated in Fig. 3, the neural network 
takes as inputs the aircraft rate measurements, the augmented control commands being fed to the 
inverse plant model, and some bias terms.  Three neural networks were used for this study; one for pitch 
augmentation command generation, one for roll augmentation command generation, and one for yaw 
augmentation command generation.  All have the form 
 

       gwCommandonAugmentati T=            (3) 

where g represent the basis function elements (e.g., pitch-roll-yaw inputs to inverse, scaled body rates, 
and various products of those terms) and w are the weights of the neural networks.  The weights are then 
updated according to 

         gkw ε−=
•

            (4) 

where the ε term is the error metric fed into the PID controller (Eq. 2).  The PID controller gain terms are 

selected on the basis of a Lyapunov stability analysis.
8-9

  The underlying analysis is too complex and 
detailed to repeat in this paper. 
 
 
The Neural Network Confidence Tool 
 
It is obvious that the performance of the overall controller strongly depends on the performance of the 
neural network. If the neural network is not able to learn the required adaptations, it will produce arbitrary 

outputs that can impede the controller or might even lead to instability. The error ε between the actual 

and desired behavior drives the learning algorithm.  However, a small error does not always imply that the 
neural network weights are correct.  For example, if the pilot is able to learn how to control the aircraft, the 
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Figure 4.  IFCS Damage Adaptive Control System (simplified). 
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resulting error to drive the learning process effectively becomes shut off.  The problem is that if the pilot 
should lose control, the untrained network may not be able to take over, resulting in a loss of control.  
Hence, it is important to know when the neural network has not been properly trained, even if the 
temporary control commands are good. 
 
The Confidence tool is a dynamic monitor, which checks the output values of the neural network and 
determines if the output of the neural network is reliable by calculating a confidence measure.  This metric 
is based upon a statistical model of the learning system originally developed for pre-trained neural 
networks, but recently extended for use with on-line learning neural networks.  The Confidence tool uses 

a Bayesian approach to dynamically calculate a confidence measure: an error bar with width σ2 around 

each output of the neural network.  A small σ indicates good quality, meaning that the output of the neural 

network is, with a high probability, reasonable given the current weight values.  Large σ’s indicate poor 
output estimation quality of the network.  Assuming a Gaussian prior p(w) for the neural network weights 
w, Bayes rule 
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Dwp =             (5) 

 
allows calculation of the effects of learning, i.e., how the weights are influenced by training the network 
with training data D.  This posterior p(w|D) is the probability of the updated weights given the training data 
D. For the purpose of monitoring network learning, Refs. 10 and 11 show that this calculation can be 
approximated by 
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where g is the gradient of the output with respect to the weight vector, and A is the regularized Hessian 
matrix computed as 
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I is the identity matrix and α and β are hyper-parameters which are estimated dynamically. Bishop 
discusses various approaches to estimate the hyper-parameters.

12 
 This approach is not restricted to the 

type of neural network used within the IFCS controller, but it can be extended to arbitrary network 
architectures. The Confidence Tool has been developed to work together with the on-line training 
algorithm of the IFCS controller. By using a sliding window technique, the performance matrix A

-1 
is 

approximated without requiring a costly matrix inverse at every step in time. A detailed description of the 
Confidence Tool can be found in Refs. 10 and 11. 
 
 
Simulation Results 

The Confidence Tool was simulated using a Mathworks Matlab/Simulink model of the controller, neural 
network, and a nonlinear model of the aircraft dynamics.  Figure 5 shows how repeated adaptation in a 
specific scenario lead to increased confidence in the network’s behavior. In the top panel, the roll 

confidence metric (
2σ  ) is shown over time (small portion of a simulated test flight). At times t = 1, 11, 

and 17 sec, a doublet commands (fast stick movement from neutral into positive, then negative and back 
to neutral position) are introduced, as indicated in the lower plot of Fig. 5.  At time = 1.5 sec, one control 
surface of the aircraft (stabilizer) is held fixed to simulate a stuck control surface failure. Because the 
system dynamics and the model behavior do not match at this point, the neural network produces an 
augmentation control signal to compensate for this deviation.  The network weights are updated 
according  to  the  given  weight update rule. Initially, the network confidence metric is large (meaning low  
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Figure 5:   Confidence value s
2
 over time (top) and pilot command doublets for roll axis 

(bottom) during simulation of doublet inputs at times t = 1, 11, and 17 sec.  A 
stabilator failure is introduced at t = 1.5s. 

 

 

Figure 6:   Confidence value σσσσ
2

 (top) and neural network weights (bottom) during 

simulation of doublet inputs at times t = 1, 11, and 17 sec with stabilator 
failure introduced at t = 1.5 sec and corrupted weight update rule. 
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confidence or indicating a large uncertainty in the network output), but as soon as the damage occurs, the 
network begins to adapt.  Proper learning adaptation is indicated by progressively smaller confidence 
metrics being generated to subsequent doublet inputs. A small confidence metric indicates a high 
probability that the network is learning well and that the changes in the neural network outputs with 
changes in the weight values are small.  A second and third doublet input, identical to the first one, are 
executed at T=11s, and T=17s, respectively. During that time, the network’s confidence metric is reduced, 
indicating that the network has successfully adapted to handle the failure situation. 

Figure 6 shows the results of a simulation with the same pilot inputs as before, but with the network 
weight update rule corrupted on purpose to prevent the network from being able to adapt toward a 
solution. This produced an unstable system, as can be seen by the divergence of the neural network 
weights in the upper plot after the second pilot command (which also caused termination of the simulator 

run). The increase of σ
2

 during the first doublet is roughly the same as before, although the network 
takes longer to gain confidence.  However, during the second doublet, the weights of the network diverge, 

leading to large and erratic outputs.  The confidence metric (σ
2
) reaches a peak value of approximately 

140 before the simulation halts. This (albeit extreme) scenario demonstrates the tool’s ability to detect—in 
real time—situations where the neural network is not behaving correctly. 

 
Preliminary Flight Test Data  
 
The Confidence Tool was flight tested on the F-15 IFCS testbed aircraft in the Spring of 2006.  During this 
testing, the neural network controller was evaluated with simulated canard and stabilator failures.  A 
complete exposition of the flight test results must await completion of the flight tests in the Fall of 2006.  
Nevertheless, the initial data set obtained thus far indicates the Confidence Tool is functional and 
producing some interesting results.  Only a few samples are provided below of the many available to be 
studied. 
 
Figures 7-10 presents the results obtained from a test point taken at 20,000 feet and 0.75 Mach number 
while performing a 3G longitudinal tracking maneuver.  The objective of this maneuver was to study the 
research aircraft’s (F15) ability to follow a chase aircraft (1000-1500 feet behind) through a 3g turn at 
constant speed.  At time t = 0 sec, the neural net was activated.  The left stabilator was “frozen” 7 
seconds later to simulate a stuck actuator.  The simulated tracking maneuver followed shortly thereafter.  
Each figure has four sub-plots: a plot of the stabilator positions to show the introduction of failure, the 
weight values of the pitch neural network, the pitch neural network confidence metric, and finally the pitch 
portion of the PID error signals. 
 
Figures 7 and 8 show the effect of a -2 deg failure of the left stabilator.  The only difference in the test 
conditions for the data shown in these two figures was that in Fig. 8 the neural network was given training 
signal inputs.  These were generated as pitch doublets introduced by the pilot during approximately the 
first 50 seconds of the record.  In Fig. 7, the confidence metric becomes larger (worse confidence) during 
the periods at which one weight is especially seen to demonstrate convergence problems.  The bottom-
most plot of Fig. 7 shows significant controller errors occurred during those periods.  In contrast, the 
bottom plot of Fig. 8 indicates that the training inputs given to the network appear to have improved the 
neural network learning, as desired.  In Fig. 8, from t = 20 to t = 40 where after the doublet input ceases, 
the control error is seen to be driven nearly to zero and the neural network values do not appear to be 
changing significantly.  Although the true value of the network weights is not known, the fact that the 
control error signals are low indicates that convergence to the correct weights is highly probable.  Also 
during this period, it is seen that the Confidence metric drops nearly to zero, indicating very good 
confidence in the network. 
 
Figures 9 and 10 show the effect of a larger, -4 deg failure of the left stabilator.  Again, the only difference 
in the test conditions for the data shown in these two figures was that in Fig. 10 the neural network was 
given training input signals (pitch doublets) during approximately the first 50 seconds.  Comparing the 
lower-most  subplots of  Figs. 9  and 10,  it is seen that the training inputs again likely helped to lower  the  
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Figure 7:   Flight test data showing effect of -2 deg locked stabilator at t = 7 sec on pitch neural 
network weights, pitch confidence metric, and pitch controller error signals during a 3-g 
tracking maneuver at 20,000 ft and 0.75 Mach number. Run 193 csv 1. 
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Figure 8:   Same test condition as Fig. 7 but with pitch doublets introduced at t = 15, 20, 45, 

and 55 sec, then followed by 3g tracking maneuver.  Run 193 csv 2. 
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Figure 9:   Flight test data showing effect of -4 deg locked stabilator at t = 7 sec on pitch neural 

network weights, pitch confidence metric, and pitch controller error signals during a 3-g 
tracking maneuver at 20,000 ft and 0.75 Mach number. Run 193 csv 1. 
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Figure 10:   Same test condition as Fig. 9 but with pitch doublets introduced at t = 20, 30, and 
45 sec, then followed by 3g tracking maneuver.  Run 193 csv 4. 

 

Confidence during neural 
network training inputs 



 12 

error in the neural network weights.  In examining the control errors for the first 60 seconds, it is seen  
that after the pilot stops the doublet training inputs, the resulting control errors are much less (Fig. 10) in 
comparison to the same time period without training (Fig. 9).  This indicates an improvement in the 
handling qualities might be noticed, and in fact did appear to agree with pilot assessments.  Figure 10 
also shows progressively lower confidence metric values (better learning) with successive doublet inputs.  
This is reminiscent of the simulation findings shown earlier in Fig. 5.  It indicates that the neural network 
weights have progressively moved closer to their true values. 
 
For each test point, the pilots were asked to evaluate the handling qualities according to the Cooper-
Harper rating (CHR) scale, whereby a rating of 1 is the best, and 10 is the worst.  Table 1 presents the 
CHR ratings for the four cases shown in Figs. 7-10 in comparison to the baseline cases.

13
  There were 

two baselines: 1) baseline handling quality with no stabilator failure, and 2) handling quality with stabilator 
failure, but with the neural networks turned off.  The pilots rated the aircraft for gross target acquisition, 
fine tracking, and pitch-induced oscillation (PIO) tendency.  In all cases shown in Table 1, the neural 
networks did not restore the same handling quality ratings to the baseline (no failure) level.  Interestinglly, 
the training inputs used to improve neural network learning appeared to have reduced the handling 
qualities for the case of -2 deg failure, yet improved the handling qualities for the case of -4 deg failure.  
This phenomena remains under investigation.  At the test points shown in Table 1, the neural networks 
induced considerable PIO effects not seen in the baseline aircraft. 
 
Although the neural networks did not fully restore the baseline handling qualities during failure, this does 
not mean that the neural networks were not successfully employed.  The failures tested in this flight test 
program were necessarily benign to maximize pilot safety.  It is very possible that given more severe 
failure situations, the neural networks might be able to give an otherwise uncontrollable aircraft enough 
control authority to land, albeit with somewhat degraded handling qualities. 
 
 

Table 1: Comparison of Handling Qualities Using the Cooper-Harper Rating Scale 

 

Stab Failure 

Magnitude 

Gross 

Acquisition 

CHR 

Fine Tracking 

CHR 

PIO 

rating 

Baseline (flight 193) 2 2 1 

-2 deg from trim; NN off 4 3 1 

-2 deg from trim; NN on 3 3 4 

-2 deg from trim; NN on 

with training 

5 4 4 

-4 deg from trim; NN off 5 4 4 

-4 deg from trim; NN on 4 5 4 

-4 deg from trim; NN on 

with training 

3 3 4 

 

 

Conclusions 

Given the both the incomplete understanding of the test data that has been so recently acquired and that 
more data will likely soon be acquired, it is too early to make conclusive statements regarding the ability 
of the neural-adaptive controller to restore aircraft performance in the event of failure.  The data does 
show, however, that the Confidence Tool appears to be able to calculate a useful metric of neural network 
learning performance.  As such, the output of the Confidence Tool might be suitable to queue controller 
actions or to produce pilot advisory warnings which could play a significant role towards the eventual 
certification of neural-adaptive controllers. 
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